No services found
No Products found
Developing antibodies against cancer targets? Discover the world’s first Human Cancer Phage Display Library
Get synthetic peptides for a myriad of applications at the market’s most competitive prices. Our custom peptide synthesis platform offers a wide range of modifications and unique no win – no fee guarantees. Fill out the form to receive an instant quote or order online to expedite your projects.
Starting at 2.12$/AA
Choose the market’s most competitive offer. Our instant quote and secure online order system will save you time.
No win, no fee
Explore your most challenging projects with ease, thanks to our unique non win, no fee guarantees.
Up to 150 AA
Synthesize peptides up to 150 AA and select from an unlimited range of modifications.
When it comes to the production of peptides, solid-phase peptide synthesis (SPPS) is the method of choice. First described in the early 1960s, Merrifield’s method of attaching peptide chains to polymeric solid supports has become a mature industrial process valued for being flexible and cost-effective.
Today, SPPS is the preferred chemistry for generating peptides with diverse structural architectures containing anywhere between 5 to 150 amino acids. It is also the best method to assemble peptides with unnatural or modified residues.
Over the past decades, peptides synthesized by SPPS have garnered popularity in multiple applications, including the production of peptide drugs, vaccines, cosmetics, and components for drug and gene delivery applications, among others.
SPPS is a scalable, practical, economical, convenient, and efficient process of chemical synthesis of peptides. In comparison to conventional solution-phase strategies, SPPS offers significant advantages. Because new chains are anchored to solid supports, a large excess of reagents can be used to ensure the proper coupling of new amino acids or segments (fragments composed of several amino acids) to growing peptide chains.
Due to the stability of the solid support, the excess reagents can also be easily removed by washing and filtration, significantly simplifying the purification process. Plus, all steps of SPPS can be performed in a single reactor (one-pot synthesis) without the need to transfer materials, effectively reducing the production cost and hands-on time. Alternatively, solid supports may be packed in columns and used in a continuous-flow mode. In this way, excess reagents and washing chemicals can be pumped through the columns to accelerate the process of synthesis.
The flexibility of solid supports makes solid-phase synthesis amenable to automation, making it ideal for the industrial-scale production of peptides.
Whether peptides are synthesized in solution or on a solid support, peptide chain elongation can be achieved in a stepwise manner (one amino acid at a time), through segment condensation (coupling peptide fragments instead of single amino acids), or a combination of the two. Peptide synthesis is based on six general principles, regardless of reaction chemistry:
Although termini protecting groups allow a finer degree of control over the synthesis process, they must be selectively removed before another protected amino acid or segment can be coupled to the growing chain.
Due to the cyclic nature of SPPS, deprotection takes place several times during the synthesis and thus should be fast, free of side reactions, preferentially take place in mild conditions – to avoid removing side chain protecting groups – and render easily eliminated byproducts.
When it is successfully achieved, another step must take place before a new residue can be coupled to the growing chain – the activation of the carboxylic acid moiety of each incoming amino acid. This process makes use of diverse coupling reagents such as carbodiimides (e.g., DCC or DIC), or in situ coupling reagents, often based on phosphonium or aminium/uronium-imonium salts (e.g., PyBOP, TBTU, HATU, COMU).
Deprotection, activation, and coupling steps happen cyclically until the solid-phase peptide synthesis is completed. At this point, it is vital to detach the peptide from its solid support and remove all remaining side chain protecting groups without significantly altering the peptide’s composition.
In standard SPPS processes, this cleavage and global deprotection are carried out in the presence of 1-5% of trifluoroacetic acid (TFA). But despite its effectiveness, this reagent also tends to generate highly reactive cationic species which, unless trapped, can alter amino acids in the peptide backbone, particularly those containing nucleophilic groups (e.g., Trp, Met, Tyr, and Cys).
To prevent this undesired effect, nucleophilic reagents, also known as scavengers, are added to the mix to quench the reactive cations. Examples of popular scavengers include triethylsilane, EDT, and phenol.
The terminal protection of amino acids is one of the most challenging aspects of peptide chemistry. Most peptide synthesis processes are carried out in the C to N direction where α-amino-protecting groups are removed once every peptide synthesis cycle.
These groups should not only confer solubility but also prevent or reduce epimerization, particularly during the coupling stage. The most common α-amino-protecting groups for solid-phase peptide synthesis are 9-fluorenylmethoxycarbonyl and tert-butyloxycarbonyl, also known as Fmoc and Boc groups, respectively.
Presently, Fmoc groups are more commonly used than Boc. These are stable under acidic conditions but susceptible to removal by weak bases, mainly secondary amines such as piperidine or piperazine. In conventional SPPS reactions, Fmoc group removal can be achieved when reasonable amounts of piperidine (about 20%) are used in relatively polar media like N, N-dimethyl-formamide (DMF), or N-methylpyrrolidone (NMP).
Conversely, Boc chemistry is more stable in basic conditions but susceptible to removal by acids such as TFA. Terminal deprotection is usually carried out in the presence of 20-50% TFA using a relatively non-polar solvent such as dichloromethane (DCM).
Interestingly, Boc chemistry was the most mature and efficient system for the first 20 to 25 years of SPPS research. However, because it requires strong acids for side chain deprotection (i.e., hydrofluoric acid), it was quickly replaced by the milder Fmoc methods when those first became available.
Solid supports for SPPS consist of a stable resin and a reversible linker, also known as handles. Merrifield’s original polystyrene (PS) resin is still widely used today as the inert component of SPPS’ solid support. However, numerous resins with enhanced properties have since become commercially available, including polyethylene glycol polyacrylamide (PEGA), cross-linked acrylate ethoxylate resin (CLEAR), and augmented surface polyethylene prepared by chemical transformation (ASPECT).
However, the success of SPPS relies in the choice of a suitable linker. Ideally, linkers should:
A list of the most used linkers can be found in the table below:
You could also be interested in:
Got a question or need a quote? Message us and we'll get back to you 48 hours or less.
Your cart is currently empty.