No services found
No Products found
Developing antibodies against cancer targets? Discover the world’s first Human Cancer Phage Display Library
IP free
You get the full ownership of, and exclusive rights to, all developed antibodies.
Decreased time to the market
Integrated downstream services to fast track your projects: sequencing, humanization, recombinant production, anti-drug antibody generation for PD/PK studies, stable cell line development…
Immunization approach diversity
Protein, peptide, DNA immunization… We carry out all types of immunization strategies!
Therapeutic antibody experts
Reformatting (bispecific, ADC), humanization, affinity maturation… Use our wide range of integrated services to go straight to the clinic!
PhD account managers
Our highly skilled experts are able to design unique strategies to deliver antibodies with the expected therapeutic features and guide you along the whole therapeutic drug development process.
Highest ethical standards
ProteoGenix applies the highest ethical standards and is committed to the ethical use of animals in science.
Antigen Design
Immunization
Cell Fusion
Hybridoma Selection And Screening (polyclonal Stage)
Isolation And Selection Of The Best Monoclones
Lead Optimization
Antibody Engineering
(Pre)Clinical Development
Antibodies are produced by B cells in higher eukaryotes in response to invading pathogens or toxins, thus, acting as key players of the humoral immune response (adaptive immune system).
B cells, as well as T cells (important for producing long-lasting immunity), carry immense antibody repertoires that are constantly evolving in response to the selective pressure (i.e. pathogens, toxins, etc.) a person experiences throughout his/her life.
Antigens trigger the immune response initiating a process of recombination which endows T and B cells with the ability to quickly generate high-affinity antibodies against new antigens. The governing mechanisms of this process of sequence diversification are:
The combination of these processes drives the selection of antibodies able to recognize gradually decreasing concentrations of a specific antigen and it can be regarded as the organism’s way to fine-tune its already immense repertoire for optimal affinity as efficiently as possible.
The knowledge that B cells carry these massive repertoires (up to 1011 antibodies in humans) and that they adapt to different antigens rather quickly through extensive recombination, prompted the development of the hybridoma technology.
Hybridomas remain one of the most cost-effective solutions for the production of therapeutic antibodies. They consist of fusing mature B cells (already challenged by a specific antigen and containing affinity matured antibodies) with a myeloma partner to produce a new hybrid and immortalized cell line.
These new cell lines can easily produce antibodies in vitro indefinitely, making the selection of clones with the highest affinity towards a specific antigen very straightforward.
Unlike in vitro methods of antibody generation, hybridomas capitalize on the extensive natural antibody repertoires and the elegant and efficient process of affinity maturation via in vivo recombination. In this way, these cell lines produce antibodies with:
Because the hybridoma technology capitalizes on this natural process, the early stages of antigen design, production, and immunization strategy development remain the most important of the entire process.
Choosing an immunization strategy often dictates the success of a hybridoma production project.This choice depends on several factors, including:
Most of the relevant clinical targets for cancer and auto-immune conditions are membrane-bound human cell surface receptors. Likewise, for viral diseases, most of the biologically important targets are structural proteins bound to the viral envelope. In these cases, antibodies able to block the interaction between the structural protein and its receptor (neutralizing antibodies) are considered valuable biotherapeutics.
These proteins are challenging to produce due to their glycosylation profiles and complex native conformations. These molecules are part hydrophobic (membrane-bound) and part hydrophilic (soluble), rendering them unstable under typical laboratory conditions.
We can employ one of two approaches to overcome this constraint:
The latter is a great solution when working with complex membrane-bound antigens. These proteins are hard to produce even when using high-productivity recombinant expression systems. Moreover, they are hard to purify and cannot be efficiently used as antigens due to their unstable nature.
In these cases, the genetic immunization approach remains cheaper since it combines the ease of gene synthesis processes with the flexibility of building self-adjuvant vectors (i.e. by including bacterially methylated DNA or toxin-encoding genes) that forgo the need to use chemical adjuvants.
However, genetic immunization is not a one-size-fits-all solution. For instance, when developing therapeutic antibodies for bacterial diseases or when targeting soluble antigens, DNA immunization may not always be the best approach.
In these cases, choosing protein-based or peptide-based immunization strategies is advisable. These targets tend to be more stable than membrane-bound proteins and easier to produce and purify. Moreover, using protein or peptide antigens guarantees greater control over the region or epitopes that will be recognized by the hybridoma-generated antibody.
Hybridomas offer unique advantages for therapeutic antibody development. Nevertheless, since most hybridomas are generated in mice or other rodents, the resulting molecules (murine antibodies) can prompt the development of the human anti-murine antibody (HAMA) response.
This response can be described as an allergic reaction to the xenogeneic antibodies and it can lead to their quick elimination from the human organism reducing their clinical efficiency. Several efficient strategies have been developed to overcome this constraint, the most important of which is the antibody humanization strategy.
Humanizing an antibody implies selecting antigen-binding domains from a murine antibody and grafting these domains into a fully human framework. This technique has been so successful that most therapeutic antibodies currently licensed for clinical use (almost 50%) are humanized IgG1 or IgG4 molecules obtained through the mice hybridoma technology.
This trend has been consistently observed year after year, reaffirming the hybridoma technology as an efficient and relevant approach for therapeutic antibody production.
The preclinical and clinical evaluation of an antibody drug is a vital step in the development process. Even if hybridoma-generated antibody drugs display the best stability and affinity in vitro, it remains vital to validate their therapeutic efficiency in preclinical models.
With this purpose in mind, the development of anti-idiotypic antibodies arose as a robust way to measure clinical efficiency. These antibodies are generally used in a Fab format and can be classified according to their function:
These antibodies are vital for establishing the pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of therapeutic antibodies. For this reason, they are also considered vital tools for optimal therapeutic antibody development.
Antibody production in hybridomas is one of the most successful approaches for the discovery of therapeutic antibodies. These hybridoma-derived drugs have inherently higher stabilities, better developability profiles, and improved affinity in comparison to their in vitro generated counterparts.
Part of what makes these antibodies so successful is the cost-effective process of in vivo affinity maturation. This process ensures that the selection of the best binders from a naïve repertoire and optimization of their affinity through extensive recombination is performed in a naturally effective way, forgoing the need for costly in vitro affinity maturation processes.
These antibodies have been successfully used for the treatment of cancer, autoimmune diseases, rare diseases, and infectious diseases, among others. Moreover, they can serve as support tools for measuring the clinical efficiency of therapeutic antibodies (anti-idiotypic antibodies).
Got a question or need a quote? Message us and we'll get back to you 48 hours or less.
Your cart is currently empty.