No services found
No Products found
Developing antibodies against cancer targets? Discover the world’s first Human Cancer Phage Display Library
Monoclonal antibodies serve a double function: block specific protein-protein interactions via their antigen-binding region and engage the immune system via their crystallizable fragment (Fc). Due to these properties, antibodies are important tools in therapy and diagnostics. Moreover, due to their stability and ease of production in optimized systems, they also serve as research tools to investigate important biological questions including pathway analysis and clinical research. Check out other frequently asked questions (FAQs) page about monoclonal antibodies on our dedicated page.
Monoclonal antibodies are one of the most sought-after reagents for a multitude of applications. In their full-length format, antibodies are widely useful for therapeutic applications requiring high specificity, selectivity, and optimal immune system engagement properties. Plus, antibodies are recurrently incorporated as reagents for in vitro diagnostic tests, surveillance, medical devices, and medical imaging.
For therapeutic applications, antibodies may be used in their “naked” form as monoclonal therapies. Moreover, it is increasingly frequent that these antibodies are subject to glycoengineering processes. This is explained by the crucial role of the Fc region in the engagement of the immune system and antibody half-life. For this reason, scientists often tailor glycan distribution and nature to maximize antibody half-life (and thus decrease administration frequency) and modulate the immune response.
Both therapeutic and diagnostic applications require, at some point, large-scale commercial production. For this reason, these antibodies require validation in the final antibody expression system and through characterization including affinity determination, epitope mapping, and stability studies, among others. For these applications, antibodies require approval by regulatory agencies, thus, the complete production process must be fully optimized and defined.
In contrast, monoclonal antibodies are also widely used for a variety of research and monitoring applications. In these cases, since antibodies have the ability to block specific protein interactions by binding to specific targets, they are useful to research:
Antibodies for these applications are still sparsely produced in hybridoma cell lines using growth in suspension or the ascites method. However, production is increasingly shifting to recombinant systems including yeast, bacterial, and mammalian.
The choice of an adequate production system remains dependent on the intended application, degree of purity required and expected yields per production batch. Given the wealth of knowledge available regarding recombinant expression in mammalian systems, in many cases, these are still the preferred approach to monoclonal antibody production for multiple applications.
Antibodies are the preferred reagents for a multitude of applications. They are better known for their therapeutic properties, but they are also widely useful for other applications including diagnostics, basic research, clinical research, environmental research, analysis, and monitoring.
Due to their selectivity, specificity, stability, and ability to block specific protein-protein interactions, they remain invaluable particularly in clinical research where they are used to discover new disease markers, determine new therapeutic targets, and measure patients’ response to specific treatments.
The most popular applications of antibodies in non-therapeutic analyses are ELISA and Flow Cytometry. However, alternative formats like antibody microarrays and biosensors continue to gain relevance particularly in pathway analysis and monitoring (food/environmental safety) applications, respectively.
Got a question or need a quote? Message us and we'll get back to you 48 hours or less.
Your cart is currently empty.